Adsorption of Co(II) ions from aqueous solutions using NiFe2O4 nanoparticles

نویسندگان

  • Raziyeh Zandipak Young Researchers and Elite Club, Hamadan Branch, Islamic Azad University, Hamadan, Iran
  • Soheil Sobhanardakani Department of Environment, Hamadan Branch, Islamic Azad University, Hamadan, Iran
چکیده مقاله:

In this study, NiFe2O4 nanoparticles (NiFe2O4 NPs) were prepared through co-precipitation method and subsequently used for the removal of Co(II) ions from aqueous solutions. The NiFe2O4 NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction spectrometry (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. In batch tests, the effects of variables such as pH (2-10), adsorbent dose (0.006-0.08 g), contact time (0-90 minutes), and temperature (25-55 ◦C) on Co(II) ions removal were examined and optimized values were found to be 7, 0.02 g, 70 minutes, and 25 ◦C, respectively. In addition, the experimental data were fitted well to the Langmuir isotherm model and the maximum adsorption capacity was found to be 322.5 mg/g. Kinetic experiments were also conducted to determine the rate at which Co(II) ions are adsorbed onto the NiFe2O4 NPs. 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Cr(VI) Ions from Aqueous Solutions Using Nickel Ferrite Nanoparticles: Kinetic and Equilibrium Study

Background & Aims of the Study: Heavy metals are the most important and main pollutants because of their accumulation and high toxicity even at very low dose and cause serious hazards to ecological system as well as human health. Thus, their removal has been challenged from drinking water and industrial waters with different technologies. The purpos...

متن کامل

Removal of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium

The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent wer...

متن کامل

Removal of Hg (I) and Hg (II) Ions from Aqueous Solutions, Using TiO2 Nanoparticles

For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results ha...

متن کامل

Removal of Hg (I) and Hg (II) Ions from Aqueous Solutions, Using TiO2 Nanoparticles

For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results ha...

متن کامل

Removal of Pb(II) and Cu(II) Ions from ‎Aqueous Solutions by Cadmium Sulfide ‎Nanoparticles

   In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...

متن کامل

Removal of Fe and Cu Ions from Aqueous Solutions by Adsorption Using Peanut Hulls

The present study was conducted to evaluate the possibility of using peanut hulls for the removal of Feand Cu from aqueous solutions.This paper incorporates the effects of dose, concentration and pH.Adsorption of heavy metal on adsorbents was found to increase on decreasing initial concentration, the sorption capacity strongly increased with pH in the range 3-4. The results showed that the remo...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  179- 187

تاریخ انتشار 2015-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023